
We Have a DREAM: Distributed Reactive Programming
with Consistency Guarantees

Alessandro Margara
Dept. of Computer Science
Vrije Universiteit Amsterdam

a.margara@vu.nl

Guido Salvaneschi
Software Technology Group

Technische Universität Darmstadt
salvaneschi@cs.tu-darmstadt.de

ABSTRACT
The reactive programming paradigm has been proposed to
simplify the development of reactive systems. It relies on
programming primitives to express dependencies between
data items and on runtime/middleware support for auto-
mated propagation of changes. Despite this paradigm is re-
ceiving increasing attention, defining the precise semantics
and the consistency guarantees for reactive programming in
distributed environments is an open research problem.

This paper targets such problem by studying the con-
sistency guarantees for the propagation of changes in a
distributed reactive system. In particular, it introduces
three propagation semantics, namely causal, glitch free, and
atomic, providing different trade-offs between costs and
guarantees. Furthermore, it describes how these semantics
are concretely implemented in a Distributed REActice Mid-
dleware (DREAM), which exploits a distributed event-based
dispatching system to propagate changes.

We compare the performance of DREAM in a wide range of
scenarios. This allows us to study the overhead introduced
by the different semantics in terms of network traffic and
propagation delay and to assess the efficiency of DREAM in
supporting distributed reactive systems.

Categories and Subject Descriptors
C.2.4 [Computer-Communication Networks]: Dis-
tributed Systems; D.1.3 [Software]: Concurrent Program-
ming—Distributed Programming

Keywords
Dream, Distributed Reactive Programming, Consistency
Guarantees, Glitch-Freedom, Event-Based Middleware

1. INTRODUCTION
Many modern software systems are reactive: they respond

to the occurrence of events of interest by performing some

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from Permissions@acm.org.
DEBS’14, May 26 - 29, 2014, MUMBAI, India.
Copyright 2014 ACM 978-1-4503-2737-4/14/05 ...$15.00.
http://dx.doi.org/10.1145/2611286.2611290.

computation, which may in turn trigger new events. Exam-
ples range from graphical user interfaces, which react to the
input of the users, to embedded systems, which react to the
signals coming from the hardware, to monitoring and con-
trol applications, which react to the changes in the external
environment. Designing, implementing, and maintaining re-
active software is arguably difficult. Indeed, reactive code is
asynchronously triggered by event occurrences. Because of
this, it is hard to trace and understand the control flow of
the entire system [25].

The reactive programming paradigm [1] was proposed to
mitigate these issues and simplify the development of reac-
tive systems. It is based on three key concepts: time-varying
values, tracking of dependencies, and automated propaga-
tion of changes. To explain the core principles of reactive
programming, let us consider the following pseudocode snip-
pets (pseudocode is sans-serif in the rest of the paper) that
define a variable a and a variable b that depends on a:

1 var a: int = 10
2 var b: int = a + 2
3 println(b) // 12
4 a = 11
5 println(b) // 12

1 var a: int = 10
2 var b: int := a + 2
3 println(b) // 12
4 a = 11
5 println(b) // 13

In conventional imperative programming (left), any future
change to the value of a does not impact the value of b. In
reactive programming (right), by defining the second line as
a constraint (denoted by :=) rather than a statement, we
ensure that b gets constantly updated to reflect the latest
value of a. In particular, the runtime environment identi-
fies the dependency between a and b and propagates every
change from a to b, forcing the recomputation of the latter.

This solution presents several advantages over the tradi-
tional Observer design pattern [20] adopted in event-based
architectures to propagate changes. In particular, the pro-
grammer does not have to implement the update logic. In-
stead, she declaratively specifies the dependencies between
variables and entirely delegates the update process to the
runtime environment. Furthermore, the runtime environ-
ment takes care of ensuring the correctness of the propaga-
tion. For example, it can avoid the occurrence of glitches,
i.e., temporary violations of data flow invariants [6]. This
results results in more compact and readable code, and re-
duces the possibility of subtle errors. For example, in 2008
a half of the bugs reported for Adobe’s desktop applications
was generated in code for event handling [25].

Despite many reactive applications are intrinsically dis-
tributed (e.g., Web applications, monitoring applications,
mobile applications) and despite the benefits of reactive pro-

142

gramming in distributed settings have been recognized in
the literature [35, 1, 28], most existing solutions for reactive
programming do not support distribution [1]. Furthermore,
the problem of defining suitable properties and consistency
guarantees for the propagation of changes (e.g., to avoid
glitches) has received little or no attention in distributed
implementations [1, 28].

We argue that a precise definition of such properties and
guarantees is an essential requirement for every system that
supports the reactive programming paradigm. We also claim
that the programmer should be able to choose the level of
guarantees she prefers, based on the requirements in terms of
semantics as well as computation and communication costs.

This paper focuses on distributed reactive programming
(DRP) and specifically addresses the issues described above.
First, it introduces an abstract model for DRP systems and
defines some consistency guarantees for the propagation of
changes. Starting from this analysis, it proposes three prop-
agation semantics, providing different trade-offs between the
properties they ensure and their implementation costs.

Next, the paper presents a concrete implementation of
these semantics in a Distributed REActive Middleware
(DREAM). DREAM is entirely implemented in Java to pro-
mote interoperability with existing software (e.g., Android
applications) and exploits the REDS distributed event dis-
patching system [10] to propagate changes. Finally, the pa-
per offers an extensive evaluation of the overhead introduced
by the three proposed semantics in terms of network traffic
and propagation delay.

To summarize, the paper contributes to the research on
reactive programming in several ways: (i) to the best of our
knowledge, it represents the first attempt to precisely study
the consistency guarantees for the propagation of changes in
DRP systems; (ii) it proposes three propagation semantics
and extensively studies their costs; (iii) it presents the de-
sign, implementation, and evaluation of DREAM, a concrete
middleware for DRP.

The rest of the paper is organized as follows. Section 2
presents the reactive programming paradigm and motivates
the work. Section 3 introduces an abstract model for DRP
and studies desirable consistency guarantees. Section 4
and Section 5 discuss the API and the implementation of
DREAM. Next, Section 6 assesses the performance of the
middleware. Finally, Section 7 surveys related work and
Section 8 concludes the paper.

2. BACKGROUND AND MOTIVATION
To describe reactive programming in more details and to

motivate the requirements for different levels of guarantees
in the propagation of changes, let us consider a financial
application system. The system holds a certain amount of
stock options and performs forecast analysis on the stock
market. The code snippet below sketches up a possible im-
plementation for such system using reactive programming.

A data source module offers three time-changing variables:
marketIndex, stockOpts, and news, which provide the
current value of the stock market, the amount of stocks cur-
rently hold by the company, and the latest economics news
from the Web. These variables are processed by three mod-
ules that compute the forecasts f1, f2, and f3 for the hold
stocks trend according to different financial models.

Constraints (denoted by :=) bind a variable to a reac-
tive expression that involves other variables. For exam-

ple, the variable f1 is bound to the reactive expression
Model1.compute(marketIndex,stockOpts). When
any of marketIndex or stockOpts changes its value, the
variables that depend on them through a reactive expression
are not valid anymore. For example, when marketIndex
changes, the value of the model f1 must be recomputed us-
ing the most recent value of marketIndex. In reactive sys-
tems, the runtime is responsible for automatically propagat-
ing changes and for recomputing some values, when needed.
In the rest, we describe three alternative variants of the sys-
tem (V1, V2 and V3) and analyze their requirements in
terms of consistency guarantees.

V1

V2

V3

1 var marketIndex = InputModule.getMarketIndex()
2 var stockOpts = InputModule.getStockOpts()
3 var news = InputModule.getNews()
4

5 // Forecasts according to different models
6 var f1 := Model1.compute(marketIndex,stockOpts)
7 var f2 := Model2.compute(marketIndex,stockOpts)
8 var f3 := Model3.compute(marketIndex,news)
9

10 var gui := Display.show(f1,f2,f3)
11

12 var financialAlert := ((f1+f2+f3)/3) < MAX
13 if (financialAlert) decrease(stockOpts)
14

15 var financialAlert_n := computeAlert_n(f1,f2,f3)
16 if (financialAlert_n) adjust_n(stockOpts)

V1. Mobile application. In the first variant (box V1), the
forecasts are transmitted to a GUI in a mobile application
that displays their current values. As already discussed, a
change in marketIndex triggers a recomputation of f1,
f2, and f3. Let us assume that the recomputation of f1
terminates first. The change propagates to the gui, which
is updated to display the new value of f1. In this scenario,
gui is recomputed with the new value of f1 but still the
old values of f2 and f3. The user experiences a temporary
inconsistency in the values that are displayed (a glitch, as we
will explain soon). However, such an inconsistency does not
represent a serious issue for this application: as soon as the
new values of f2 and f3 are computed, the gui is refreshed
and reflects the current value of marketIndex.

V2. Models aggregator. In the second variant of the
system (box V2), forecasts f1, f2, and f3 are aggregated
in the financialAlert variable. To prevent money loss,
an automated procedure starts selling stock options when
the financialAlert issues a warning, i.e. when the mean
of f1, f2, and f3 drops below a threshold MAX.

Let us consider again a change in the marketIndex. As
in the previous example, as soon as f1 is recomputed, the
value of financialAlert is invalidated. However, if the
expression associated to financialAlert is immediately
recomputed with the new value of f1 but the old values of
f2 and f3, financialAlert can hold a wrong value.

For example, let us assume that the following set of
changes occurs f1: 110→ 90, f2: 95→ 111, f3: 99→ 103
and MAX=100. If the mean is recomputed with the new
value of f1 and the old values of f2, f3, it amounts to
(90+95+99)<100 and the alert is triggered. The error is
only temporary, because as soon as f2 and f3 are available,
the expression bound to financialAlert is recomputed
to the correct value. It is clear, however, that in variant V2
such a behavior is potentially catastrophic. In our example,

143

Communication
Channel

c
c

c c c

c

c
c

c

c c
c

vi1

vi2

vin

Figure 1: A Model for DRP.

the application can place a selling order because the value
of financialAlert is temporarily wrong.

The arising of temporary spurious values, commonly re-
ferred to as glitches is a well known issue in (local) reac-
tive systems, which control the order of updates to avoid
them. In our example, waiting for f1, f2, and f3 before re-
computing financialAlert would avoid the occurrence of
glitches. In a distributed environment, where different vari-
ables can be stored at different nodes, enforcing a specific
evaluation order introduces some overhead for node synchro-
nization. Such overhead should be paid only in case glitch
freedom is a strict requirement.

V3. Multiple aggregators. In the third variant of
the system (box V3), the decision making process is split
among n components, each one computing a different
financialAlert and taking autonomous decisions on how
to adjust the stockOpts variable. The actions of the dif-
ferent components are complementary: however, the system
provides the expected behavior only under the assumption
that all the components see the changes to f1, f2, and f3
in the same order. For example, if different components see
different interleaving of marketIndex and news updates,
they may disagree on the value of f3 over time and take
contradictory measures to adjust the stockOpts variable.

This variant shows that in some cases glitch freedom is not
enough to guarantee the correct behavior of the application
and exemplifies the need for a system-wide agreement on the
order of updates.

In summary, the previous discussion shows that there is no
one size fits all solution. Instead, different levels of consis-
tency guarantees are required and developers must be able
to select the best trade-off between performance and consis-
tency for their application.

3. A MODEL FOR DRP
This section introduces a model for DRP and the termi-

nology we adopt throughout the paper. In particular, Sec-
tion 3.1 presents the entities involved in a DRP system and
the operations they perform. Next, Section 3.2 formalizes a
set of consistency guarantees for DRP.

3.1 System Architecture
Figure 1 shows the high level view of our model for DRP.

Components. We consider a distributed system consisting
of n components c1 . . . cn that can exchange messages using
communication channels. We model the state of each com-
ponent ci as a set of variables Vi = {vi1 : τi1 . . . vim : τim},
where vij represents the name of variable j in component
ci and τij its type. We say that a variable vij is defined in
the scope of component ci if vij ∈ Vi. Each component can
directly access (read and write) only the value of variables
defined in its scope.

f1

f2

f3

marketIndex

stockOpts
gui

financialAlert
news

Figure 2: Dependency graph for the stock market scenario.

Variables. Beside traditional imperative variables, compo-
nents can define reactive and observable variables. A reac-
tive variable v is defined through an expression e and gets
automatically updated. Whenever the value of one of the
variables that appear in e changes, e is recomputed to de-
termine the new value of v (lazy evaluation is for future
work). A component can read the current value of a re-
active variable defined in its scope at any point during its
execution. However, it cannot directly modify its value or
the expression defining it.

With reference to our stock market scenario, f1 is a
reactive variable defined through the reactive expression
Model1.compute(marketIndex,stockOpts). When
either marketIndex or stockOpts change, the value of
f1 gets automatically updated.

Observable variables are those that can be used to build
reactive expressions. In the stock market scenario in Sec-
tion 2, marketIndex, stockOpts, and news are observ-
able variable, used in the definition of f1, f2, and f3. Our
model supports local observable variables, that are only
visible in the scope of component ci and can be used only
to define reactive variables in ci, and global observable
variables can be used in every component. By default, ob-
servable variables are global. A fundamental feature to sup-
port composability is that reactive variables can be (locally
or globally) observable as well. This way, reactive variables
can be composed into reactive expressions to create new re-
active variables. For example, in the stock market scenario
of Section 2, the reactive variables f1, f2, and f3 are used
to define another reactive variable gui.

Dependency Graph. We call dependency graph a directed
graph D = {V,E}, where V is the set of all the observable
and reactive variables in the system and E is the set of all
the edges eij that connect a variable vi to a variable vj
if and only if vj is a reactive variable defined through an
expression ej that includes vi. We say that a variable va
depends on a variable vb if there is a path from va to vb. As
an example, the stock market scenario in Section 2 produces
the dependency graph shown in Figure 2. The gui variable
depends on both marketIndex, stockOpts, and news.

Reactive programming needs to be supported by the run-
time environment, which is responsible for automatically
and recursively propagating the changes from a variable vi
to all the variables that depend on vi.

Events. We represent the occurrence and the propagation
of changes in a DRP system using three events that model
the possible operations on the variables in the system:

- a write event wx(v) occurs when a component writes the
value x on an variable v;

- a read event rx(v) occurs when a component reads the
value x from a variable v;

- an update event u(S,wx(v)), S = {wy1(v1) . . . wyn(vn)}
occurs when some changes applied to variables v1 . . . vn

144

(for simplicity, known in advance) are propagated, trig-
gering a change (write of a new value x) in the depend-
ing reactive variable v.

The read and write events represent the way components
access local variables. We assume that these operations are
atomic. Update events model the propagation of changes
through the communication channel. Next, we show how to
specify some consistency guarantees for DRP as ordering of
write and update events.

3.2 Consistency Guarantees
The update of reactive variables takes place orthogonally

with respect to the execution flow of the program in each
component. Accordingly, it is critical for the programmer
to understand how the update process takes place, and in
particular which properties and guarantees it provides, e.g.,
with respect to the order in which updates are propagated.
We collectively refer to them as consistency guarantees.

Intuitively, there is a trade-off between the level of guar-
antees offered and the complexity of the update algorithm.
Ideally, a change in an observable variable should be prop-
agated atomically and instantaneously through the depen-
dency graph to all the reactive variables that depend on it.
This section studies in details some consistency guarantees
for DRP systems.

Exactly once delivery. A system provides exactly once
delivery if a change in the value of a variable v is propagated
once and only once to all variables depending on v. More
formally, if wx(v) occurs, then u(Si, wy(vi)), wx(v) ∈ Si

occurs once and only once ∀vi such that vi depends on v.
This property ensures that, in absence of failures, the com-

munication channel does not loose or duplicate any message
used for the propagation of changes.

FIFO ordering. A system provides FIFO ordering if the
changes to the value of a variable v in component c are prop-
agated in the order in which they occur in c. More formally,
∀vi, vj such that vj depends on vi, if wx1(vi) occurs be-
fore wx2(vi), then u(S1), wx1(vi) ∈ S1 occurs before u(S2),
wx2(vi) ∈ S2.

Causal ordering. A system provides causal ordering guar-
antee if the events that are potentially causally related are
seen by every component of the system in the same order.
More formally, with reference to [22], we define a happened
before (→) partial order relation between the events in a
DRP system as follows:

- if two events e1, e2 occur in the same process, then e1 → e2
if and only if e1 occurs before e2;

- if e1 = wx(vi) and e2 = u(Si, wy(vj)), wx(vi) ∈ Si, then
e1 → e2 (a write w happens before every update u
depending on w);

- if e1 → e2 and e2 → e3, then e1 → e3 (the happened
before relation is transitive).

We say that a system provides causal consistency guaran-
tee if and only if, for all events e1, e2 such that e1 → e2, all
the components of the DRP system see e1 before e2. Notice
that the happened before is a partial order relation: events
that are not causally related can be seen in any order by
different components. Because of this, the causal ordering
guarantee does not imply that all components see all events
in the same order.

Glitch freedom. Consider a reactive variable v that de-
pends on the set of variables Vd. Let us call Vd1 ⊆ Vd the set
of variables in Vd that depend, directly or indirectly, from a
variable v1. Each change in variable v1 reflects on variable v
since it impacts on the variables in Vd1. We call an update
of v u(S,wx(v)) a partial update if it is triggered by a change
in v1 and S ⊂ Vd1 (i.e., S does not propagate all the changes
occurred in the set Vd1). A system provides glitch freedom
if it never introduces partial updates.

To better explain this concept, let us refer again to
the stock market monitoring scenario shown in Section 2.
When the value of marketIndex changes, it influences
the forcasts f1, f2, and f3. With reference to the
financialAlert variable, a glitch occurs if the variable
gets recomputed using only some of the new forcasts (par-
tial update). No glitch occurs if financialAlert is re-
computed only when all the new values for f1, f2, and f3
are available.

Atomic consistency. A system provides atomic consis-
tency guarantee if the following conditions hold: (i) the sys-
tem provides FIFO ordering guarantee; (ii) each write event
wx(v) on a variable v is atomically propagated to all the vari-
ables that depend (directly or indirectly) on v, i.e., all the
update events u(Si, wy(vi)) triggered (directly or indirectly)
by wx(v) are executed in a single atomic operation.

Intuitively, the atomic consistency guarantee ensures to-
tal order of events (it is more strict than the causal order
guarantee). At the same time, it also ensures atomicity of
propagation: no operation can occur while a propagation is
taking place. Finally, since propagations occur atomically,
it also ensures glitch freedom.

4. DREAM: API
This section describes the API of DREAM. To promote

interoperability with existing codebases, DREAM is entirely
written in Java. In particular, variables are represented by
Java objects. The remainder of this section shows how to
define, instantiate, and use observable and reactive objects.

4.1 Observable Objects
In DREAM, observable objects are generic Java objects

that inherit from the Observable abstract class. As for
every Java object, the internal state of an observable object
can be accessed (read or modified) through method invoca-
tion. We call observable method each method of an observ-
able object that returns a non-void result.

Let us consider an observable object obj with an observ-
able method obm and a generic method m. We say that m
impacts on obm if a call to m on obj may potentially change
the return value of obm.

As discussed in the following, an observable method obm
can be used to define a reactive object. For this reason,
the runtime environment needs to capture every call to a
method that impacts on the value of obm and propagate the
change to any depending reactive objects1.

An automated detection of the impacts on relation among
methods is undecidable in the general case [37]. DREAM
solves this problem by asking the programmer to make this

1
We assume that the state of an observable object can be altered

only through method invocation. This is a best engineering practice
in object oriented programming.

145

1 public class ObservableInteger extends Observable {
2 private int val;
3

4 // Constructors ...
5

6 @ImpactsOn(methods = { "get" })
7 public final void set(int val) {
8 this.val = val;
9 }

10

11 public final int get() {
12 return val;
13 }
14 }

Listing 1: Definition of ObservableInteger

relation explicit through an ad-hoc Java annotation. An
approximation using static analysis is left for future work.

Listing 1 shows the definition of a simple Observable
class: ObservableInteger. As Listing 1 shows, defining
a new type of observable objects in DREAM requires two
actions. (i) inherit from the Observable abstract class.
(ii) annotate each method m with the set of observable meth-
ods it impacts on, by using the @ImpactsOn annotation.
For example, in Listing 1, set impacts on the observable
method get since a call to set modifies the value of vari-
able val that is read by get. DREAM provides built-in
observable types for integers and floating point numbers,
strings, and different kinds of collections. Users can create
new classes of observable objects using the procedure above.

The instantiation of observable objects is shown in List-
ing 2, Lines 2-5. The code snippet is commented in details
in the rest, after introducing DREAM support for naming
and discovery.

4.2 Reactive Objects
In DREAM, a reactive object is created from a reactive

expression using the ReactiveFactory class. A reactive
expression can combine constant values and return values
of observable methods. For example, the reactive object
generated in Listing 2, Line 9, contains an integer value
defined from the observable method get of object obInt
and the constant value 2. The reactive object generated in
Line 11 contains a string value defined starting from two
observable methods get from objects obStr1 and obStr2.
The value of a reactive object cannot be directly modified,
but only retrieved by invoking a get method (Line 14).

When defining a reactive object r in DREAM, the pro-
grammer can specify two initialization semantics. The block-
ing semantics blocks every read access to r until the current
values of all the observable methods r depends on have been
retrieved and the value of r has been successfully computed.
The non-blocking semantics enables the programmer to spec-
ify an initial value that the variable holds until its expression
can be computed.

Similar to observable objects, DREAM provides several
built-in types of reactive objects. Programmers can use
them to define the state of more complex objects. Addi-
tionally, they can define their own types of reactive objects
and the expressions to combine them2.

4.3 Naming and Discovery
In DREAM, we assume that a unique name identifies

each component of the distributed system. Similarly, a (lo-
cally) unique name identifies each observable object inside

2
In DREAM, expressions are defined using ANTLR grammars [32].

1 // Component c1
2 ObservableInteger obInt =
3 new ObservableInteger("obInt1", 1, LOCAL);
4 ObservableString obStr1 =
5 new ObservableString("obStr1", "a", GLOBAL);
6 ObservableString obStr2 = ...
7

8 // Component c2
9 ReactiveInteger rInt = ReactiveFactory.

10 getInteger("obInt.get()*2");
11 ReactiveString rStr = ReactiveFactory.
12 getString("obStr1.get()+obStr2.get()");
13 while(true){
14 System.out.println(rStr.get())
15 Thread.sleep(500)
16 }
17

18 // Component c3
19 ReactiveInteger strLen =
20 ReactiveFactory.getObservableInteger
21 ("c1.obString1.get().length()", "obString1Len");

Listing 2: Creation of observable and reactive objects

a component. The programmer can reference an observable
method obm of an object obj inside a component c using
the notation c.obj.obm. The name of the component can
be omitted when referencing a local object.

The name of an observable object and, optionally, its
visibility (local or global) are assigned at instantiation
time. For example, consider Listing 2. The statements
in Lines 2-6 are executed in component c1. Line 2 defines
an ObservableInteger object announced as obInt1, an
initial value of 1, and local visibility. Line 4 defines an
ObservableString object announced as obStr1, initial
value a, and global visibility. Reactive objects can also be
defined as observable by simply specifying a name for them.
For example, Line 19 in Listing 2 (executed in component
c3) defines a ReactiveInteger object that contains the
lenght of string c1.obString1 and makes it an observable
object by associating a unique name to it (obString1Len).
Since no additional parameters are specified, the object has
default global visibility.

To discover the observable objects available in the sys-
tem, DREAM offers a flexible discovery service. It allows
a component to retrieve the full name of observable objects
searching by type, component, local name, or a combination
of these fields.

5. DREAM: IMPLEMENTATION
This section describes the implementation of DREAM in

details, showing the protocols for automated propagation
of changes in a distributed environment, and discussing the
consistency guarantees they offer. Figure 3 shows the archi-
tecture of the middleware, which implements the abstract
model presented in Figure 1.

DREAM consists of two parts: a client library, adopted
by each component of the distributed system (denoted as c
in Figure 3) and a distributed event-based communication
infrastructure, consisting of one or more brokers (B circles
in Figure 3) connected to form an acyclic undirected overlay
network. The broker infrastructure implements the commu-
nication channel between components. An optional registry
(R in Figure 3) acts as a persistent storage.

5.1 Publish-Subscribe Communication
In DREAM, the propagation of changes from observable

to reactive objects is implemented using a publish-subscribe

146

Watcher

B

B

B

B
B

B
R

c c
c

c c
c

c

c

c

c cc

CommunicationManager

Reactive
Object

Observable
Object

Subscribe
Notify Advertise/Notify

Figure 3: The architecture of DREAM.

communication paradigm [15], based on the following three
primitives:

- advertise(c,obj,obm) is used by a component c to notify
the middleware that an object obj with an observable
method obm has been defined in its scope;

- subscribe(c,obj,obm) is used by a component to notify the
middleware about its interest in the value of the ob-
servable method obm of object obj in component c;

- notify(c,obj,obm,val) is used to notify the middleware that
a new value val has been computed for the observable
method obm of object obj in component c.

We refer to the content of these primitives as advertise-
ment, subscription, and notification, respectively. If an ad-
vertisement and a subscription refer to the same observable
method, we say that the subscription matches the advertise-
ment. Similarly, if a subscription and a notification refer to
the same method, we say that the notification matches the
subscription.

5.2 Clients
The CommunicationManager component implements

the core functionalities of the DREAM client library. It man-
ages the local communication among objects inside the same
component and serves as a proxy for global communication
involving multiple components.

Instantiating observable and reactive objects. When
the program defines a new type of observable object,
DREAM automatically weaves a Watcher advice, using
aspect-oriented technology [21]. The Watcher advice in-
teracts with the CommunicationManager without any
additional effort for the programmer. The interaction
serves two purposes. (1) Advertise new observable ob-
jects as soon as they are created. When a new observ-
able object obj is instantiated, the Watcher notifies the
CommunicationManager that obj has been created and
informs the CommunicationManager of each observable
method in obj. (2) Detect changes of the return value of the
observable methods in obj. For each method m of obj, the
Watcher uses Java reflection to identify all the observable
methods influenced by m, as specified by the ImpactsOn
annotation. When m is called on obj, the Watcher recom-
putes the value of each of these methods and notifies the
new value to the CommunicationManager.

When the programmer instantiates a new reactive object
with expression exp via the ReactiveFactory, DREAM

automatically forwards to the CommunicationManager a
subscription for each observable method in exp.

When a component c is launched, the
CommunicationManager of c connects to a single
broker of the communication infrastructure. It propagates
through the broker all the advertisements generated by
(global) observable objects defined in c and receives sub-
scriptions for them. In addition, it stores subscriptions of
local reactive objects.

Notifications. Upon receiving a notification n (either from
the remote broker or from a local observable object), the
CommunicationManager dispatches it to all interested ob-
jects, i.e., to all the reactive objects providing a subscription
that n matches. If n is a local notification matching at least
one remote subscription, the CommunicationManager also
delivers n to the remote broker.

In DREAM, each component is responsible for concretely
computing the expression expr for each reactive object obj
defined in its scope. In particular, a recomputation is trig-
gered upon receiving a new notification of change from the
CommunicationManager. In the case of causal consis-
tency, each change event can be processed immediately. In
contrast, glitch freedom may require that the evaluation of
a change is postponed until other notifications are received.
As we describe soon, the broker network is responsible for
detecting dependencies among events and notify them to the
component. The CommunicationManager employs this
information to temporarily queue notifications until they can
be processed without introducing glitches.

The CommunicationManager implements the commu-
nication within a single component using local method in-
vocation. Thus, propagating the change of an observable
method to a reactive object in the same component does
not involve any overhead due to remote communication.

5.3 Brokers
The communication between brokers is implemented using

the subscription forwarding protocol [8] on top of the REDS
event dispatching system [10]. This protocol relies on the
assumption that the brokers are connected into an acyclic
topology and works in three steps: (i) Advertisements are
propagated to all the brokers of the network. (ii) Subscrip-
tions get propagated only towards components that pro-
vided matching advertisements. (iii) Similarly, notifications
are propagated only towards components that provided a
matching subscription.

The forwarding algorithm implemented by brokers is
shown in Listing 3 (simplified for the presentation). Each
broker maintains a list of all its neighbors, i.e., all the nodes
(both brokers and components) directly connected to it.
Also, it stores the list of advertisements received from each
neighbor (advTable in Listing 3) and the list of subscrip-
tions received from each neighbor (subTable in Listing 3).

Upon receiving an advertisement adv (function
processAdv in Listing 3), the broker first updates
the advTable structure and then forwards adv to all its
neighbors, except the sender. Similarly, upon receiving a
subscription sub (function processSub in Listing 3), the
broker first updates the subTable structure, then looks
for the neighbor with an advertisement that matches sub
and forwards the subscription to it. Finally, upon receiving
a notification n (function processNotif in Listing 3), the

147

1 Map<Node, List<Advertisement>> advTable;
2 Map<Node, List<Subscription>> subTable;
3

4 void processAdv(Advertisement adv, Node sender) {
5 advTable.add(adv, sender);
6 sendToAllNodeExcept(sender, adv);
7 }
8

9 void processSub(Subscription sub, Node sender) {
10 subTable.add(sub, sender);
11 for (Node node : advTable.keySet()) {
12 List<Advertisement> advs = advTable.get(node);
13 if (!node.equals(sender) && matches(sub, advs)) {
14 sendToNode(node, sub);
15 break;
16 }
17 }
18 }
19

20 void processNotif(Notification n, Node sender) {
21 for (Node node : advTable.keySet()) {
22 List<Subscription> subs = subTable.get(b);
23 if (!node.equals(sender) && matches(n, subs)) {
24 sendToNeighbor(node, n);
25 }
26 }
27 }

Listing 3: Forwarding algorithm implemented in brokers

broker forwards n to all the neighbors with at least one
subscription matched by n.

Discovery and Initialization. As discussed above, ad-
vertisements of globally visible observable objects are deliv-
ered to all brokers of the network. This allows DREAM to
replicate the discovery service at each broker. Specifically,
when a component c connected to a broker B issues a lookup
request (to retrieve observable objects by name, type, or
component), B can process the request locally, based on the
information contained in its list of advertisements.

Concerning initialization, when a new reactive object is
defined with an expression exp, the DREAM client library
forwards a subscription for each observable method in exp.
This subscription triggers a retransmission of the latest value
of all these observable methods, enabling the new reactive
object to be initialized.

Finally, DREAM also allows observable objects to be per-
sisted: each notification of change is stored in a special bro-
ker (the Registry, R in Figure 3). Thanks to this solution,
if the component defining an observable object obs discon-
nects from the system, the latest value of all the observable
methods defined for obs can still be retrieved from R.

5.4 Implementing Consistency Guarantees
DREAM offers three propagation semantics with an in-

creasing level of consistency guarantees. (i) Causal seman-
tics provides exactly once delivery with causal ordering.
(ii) Glitch free semantics, adds glitch freedom. (iii) Atomic
semantics, implements atomic consistency.

Causal Semantics. In DREAM, both the component-to-
broker communication and the broker-to-broker communica-
tion are implemented using point-to-point TCP connections,
which provide exactly once delivery guarantee and FIFO or-
der. To ensure that FIFO order is preserved between any
given pair of components, processing inside each interme-
diate broker must preserve message ordering. Currently,
DREAM ensures this property by processing messages se-
quentially, in a single thread. Alternative implementations
that feature parallel processing should take care of reorder-
ing messages before delivery.

f1

f2

f3

marketIndex

stockOpts financialAlert

news

Figure 4: The dependency graph for the stock market sys-
tem (Variant V2).

Finally, as proved in [19], an acyclic topology that pre-
serves end-to-end FIFO ordering is sufficient to ensure that
messages are delivered in causal order.

As mentioned in Section 5.2, in DREAM, each reactive
object obj is responsible for recomputing the value of its
own expression expr. In the case of causal consistency,
obj immediately starts a recomputation upon receiving a
notification from an observable object defined in expr. No
further constraints are required to ensure causal consistency.

Glitch Free Semantics. Existing solutions for reactive
programming provide glitch freedom on single machine im-
plementations by propagating changes in the dependency
graph in topological order (breadth first). This ensures that
an expression is always evaluated after all its dependents [6,
30, 25]. To achieve the same result in a distributed envi-
ronment, we modified the algorithm for the propagation of
updates described in Listing 3 as follows.

First, when a new reactive object is created, its defining
expression is propagated to all the brokers in the communi-
cation infrastructure. This way, each broker gains complete
knowledge of the graph of dependencies among objects and
can identify possible sources of glitches. With reference to
the definition provided in Section 3.2, a glitch occurs when
the value of an observable method changes and the value of
a depending reactive object is updated before seeing all the
effects of the original change.

Let us consider again our stock market scenario. For ease
of explanation, the dependency graph for the variant V2
of the system is shown in Figure 4. We assume that each
variable is stored on a different component.

In this example, a glitch occurs if a change in
marketIndex affects the values of f1, f2, and f3, but
financialAlert gets updated upon receiving only some
notifications of change (e.g., only from f1). We refer to such
a notification as a partial update, since it does not contain
all consequences of the original change in marketIndex.

To prevent glitches, DREAM implements a queuing mech-
anism, such that partial notifications are temporarily stored
at the components until all the consequences of a change be-
come available. Specifically, before delivering a notification
n to a component c, a broker computes the set of additional
notifications that c needs to receive before processing n and
attaches this information to the message containing n. With
reference to our example in Figure 4, when a broker delivers
a notification n about a change in f1 to financialAlert,
it specifies that n can be processed only if two notifications
about f2 and f3 have been received.

Notice that, when processing n, a broker cannot deter-
mine the set of notifications a component should wait for by
looking only at the content of n. In our example, a change in
f3 could be triggered either by a change in marketIndex
or by a change in news. In the first case, the expression
defining financialAlert can be recomputed immediately
upon the reception of n. In the second case, the expression

148

cannot be recomputed until the new values of f2 and f3
(also influenced by a change in marketIndex) are propa-
gated. Because of this, a broker must be aware of the history
of changes that caused the notification under processing. In
case of glitch free semantics, DREAM attaches this informa-
tion to each event notification. In our example, a notification
about a change in f3 caused by marketIndex will be la-
beled with marketIndex. Similarly, a notification about a
change in f3 caused by news will be labeled with news.

Since the dependencies are always computed in the bro-
ker network, the glitch free protocol introduces a significant
difference with respect to the causal protocol: it always re-
quires notifications to be forwarded through the broker net-
work. Conversely, in the causal consistency protocol, each
component (and in particular the ConnectionManager
within each component) could dispatch notifications to local
subscribers without contacting the broker network.

Finally, it is easy to see that the protocol for glitch free-
dom preserves causal ordering since the properties of the
communication infrastructure are not changed. The broker-
to-broker network is acyclic and guarantees exactly once de-
livery. FIFO order is preserved since notifications are always
delivered inside the broker network. Crucially, the queuing
mechanism implemented at the components does not change
message order. A notification waits in the queue until all the
notifications related to the same reactive expression arrive,
which may result in a delay in the expression evaluation but
not in a change in the message order.

Atomic Semantics. The atomic semantics adds total or-
der of changes on top of the glitch free semantics. DREAM
ensures total order by implementing a locking mechanism
based on a special centralized component in the commu-
nication infrastructure: the Ticket Granting Server
(TGS). Upon receiving a new change notification n from an
observable method obm, a broker B contacts the TGS to ob-
tain the right of propagating the change to all the reactive
objects that (directly or indirectly) depend on obm. The
protocol works as follows: (i) B sends n to the TGS. (ii) The
TGS computes all the leaves in the dependency graph that
n should reach. (iii) The TGS stores the notifications in a
FIFO queue and delivers them to the broker network one
at a time. (iv) While processing a notification, when a bro-
ker B sends an update for a leaf in the dependency graph,
it notifies the TGS. Upon receiving an acknowledgement of
delivery to all the leaves in the dependency graph, the TGS
considers the propagation of a change completed, and starts
the propagation of the next change in the queue.

Since the protocol used in the communication infrastruc-
ture is identical to the one described for glitch freedom, all
guarantees introduced in the previous sections are preserved.
The use of a locking mechanism adds the guarantee that only
one component at a time can execute an update.

6. EVALUATION
Our evaluation is twofold. First, we perform a comparative

assessment of the cost of ensuring different consistency levels
and analyze the factors that influence such a cost. Second,
we investigate the absolute performance of our current imple-
mentation – including communication overhead and evalua-
tion of reactive expressions – to show that DREAM is usable
in practice.

For the first goal, we created an emulated network using

Number of brokers 10
Number of components 50
Topology of broker network Scale-free
Percentage of pure forwarders 50%
Distribution of components Uniform
Link latency 1 ms–5 ms
Number of reactive graphs 10
Size of dependency graphs 5
Size of reactive expressions 2
Degree of locality in expressions 0.8
Frequency of change for observable objects 1 change/s

Table 1: Parameters used in the default scenario.

the Protopeer network emulator [16], on top of which we run
multiple DREAM brokers offering the DRP service to several
components. This allowed us to easily control a number
of network parameters. For the second goal, we tested the
processing and communication overhead of DREAM on a real
machine.

6.1 Analysis of the Protocols for DRP
In this first set of experiments, we compare the costs of

our DRP protocols while providing different levels of consis-
tency guarantees. We focus on two metrics: network traffic
and propagation delay. To compute network traffic, we con-
sider both component-to-broker communication and broker-
broker communication and we measure the average traffic
flowing in the entire network every second. To compute
propagation delay we compute the average difference be-
tween the time an event is produced, i.e., when the value of
an observable object obs changes, and the time an event is
processed, i.e., the change is used to update the value of a
reactive object that depends (directly or indirectly) on obs.

Experiment Setup. Several parameters can impact on
the performance of our protocols. To isolate their effect, we
defined a default scenario, whose values are listed in Table 2.
Next, we performed several experiments, changing a single
parameter in each one.

Our default scenario consists of 10 brokers connected in
a randomly-generated scale-free overlay network and serv-
ing 50 components. We assume that 50% of the brokers
are pure forwarders, i.e., do not have any directly connected
component. Components are uniformly distributed among
the remaining brokers. The latency of network links is uni-
formly distributed between 1 ms and 5 ms. We assume that
the time required to process a packet is negligible with re-
spect to the link latency3.

We consider 10 separate dependency graphs, each of
them including an observable object (the original source of
changes) and 4 reactive objects that depend directly or in-
directly from it. Each reactive object is defined by a ran-
domly generated expression including 2 operands (on aver-
age). Each observable object changes its value every second
(on average). To simulate different application loads, we
introduce a locality parameter: given a reactive object r
depending on an observable object obs, the locality param-
eter defines the probability that r and obs are defined in the
same component. With locality 1, all objects of the graph
are deployed on a single component. Conversely, with lo-
cality 0, objects are randomly distributed over all available
components.

Our experiments consist of two phases. In the first phase

3
Several algorithms have been presented in the literature for ef-

ficient event dispatching [26, 27, 34]. Further, Section 6.2 validates
the assumption using the current DREAM implementation.

149

Delay (ms) Traffic (KB/s)
Centr. Distr. Centr. Distr.

Causal 4.77 4.76 68.3 69.8
Glitch free 29.53 17.18 205.4 130.9
Atomic 53.41 26.75 265.5 161.3

Table 2: Centralized vs. distributed broker networks.

 0

 10

 20

 30

 40

 50

 60

 0 0.2 0.4 0.6 0.8 1

Av
er

ag
e

D
el

ay
 (m

s)

Degree of Locality

Causal
Glitch Free

Atomic

(a) Delay

 0

 100

 200

 300

 400

 500

 0 0.2 0.4 0.6 0.8 1
O

ve
ra

ll
Tr

af
fic

 (K
B/

s)

Degree of Locality

Causal
Glitch Free

Atomic

(b) Traffic

Figure 5: Locality of Expressions.

the components define and deploy observable and reactive
objects. In the second phase, the value of observable ob-
jects is repeatedly changed and propagated over the reactive
graphs by the DRP service.

Advantages of Distribution. Our first experiment inves-
tigates the advantage of using a network of brokers for the
DRP service. We compare a centralized solution with the
distributed solution in our default scenario. More in partic-
ular, the two solutions consider the same (physical) network
topology, but deploy a different number of brokers (1 in the
centralized scenario, 10 in the distributed scenario).

Table 2 shows the results we measured: the level of consis-
tency guarantees significantly influences the performance of
DREAM in both scenarios. Let us first consider the average
change propagation delay. The differences we measured in
the default (distributed) scenario (Table 2, Column 2) can
be explained as follows. When providing causal consistency,
each component processes local changes without contact-
ing the broker network. Since our default scenario exhibits
a high degree of locality in expressions, most changes can
be processed within components. In contrast, the protocol
for glitch freedom requires each and every event to be pro-
cessed by at least one broker. Atomic consistency requires
additional communication to acquire the lock from the TGS.

If we consider the centralized scenario (Table 2, Column
1), we observe that, in the case of causal consistency, the de-
lay is almost identical to the one measured in the distributed
scenario. Also in this case, most of the events can be pro-
cessed locally at components. In contrast, the protocols for
glitch freedom and atomicity forward all the events though
the centralized broker. While in our default scenario the
filtering and forwarding of events was performed incremen-
tally at each broker, as close as possible to the event source,
in a centralized environment all events need to reach the
single broker to be processed and forwarded, which causes a
significant increase in the average delay.

The considerations above apply for network traffic as well
(Table 2, Columns 3-4). The causal consistency protocol
needs to forward less notifications, the protocol for glitch
freedom and atomic consistency are comparable, but the
latter produces more traffic because it includes the com-
munication with the TGS. We can conclude that the idea of
adopting a distributed broker network for the propagation of
changes offers significant benefits in terms of network traffic
and propagation delay.

 0

 10

 20

 30

 40

 50

 60

 2 4 6 8 10 12 14 16

Av
er

ag
e

D
el

ay
 (m

s)

Number of Objects per Graph

Causal
Glitch Free

Atomic

(a) Delay

 0

 200

 400

 600

 800

 1000

 2 4 6 8 10 12 14 16

O
ve

ra
ll

Tr
af

fic
 (K

B/
s)

Number of Objects per Graph

Causal
Glitch Free

Atomic

(b) Traffic

Figure 6: Size of reactive graphs.

 0

 20

 40

 60

 80

 100

 1 2 3 4 5 6 7 8

Av
er

ag
e

D
el

ay
 (m

s)

Number of Objects per Expression

Causal
Glitch Free

Atomic

(a) Delay

 0
 200
 400
 600
 800

 1000
 1200
 1400
 1600

 1 2 3 4 5 6 7 8

O
ve

ra
ll

Tr
af

fic
 (K

B/
s)

Number of Objects per Expression

Causal
Glitch Free

Atomic

(b) Traffic

Figure 7: Size of Reactive Expressions.

Locality of Expressions. The previous experiments show
the capability of the causal consistency protocol to exploit
locality. To further investigate this aspect, we tested the
performance of DREAM when changing the degree of local-
ity (Figure 5). All protocols reduce the average propagation
delay as the degree of locality increases (Figure 5a): in-
deed, as the locality increases, the number of brokers used
to forward an event decreases. As expected, the causal con-
sistency protocol benefits more than the others from the
increased degree of locality.

The results concerning network traffic (Figure 5b) are par-
ticularly interesting. The glitch free and the atomic proto-
cols generate similar amounts of traffic – the latter being
slightly more expensive because of the communication with
the TGS. Noticeably, the traffic generated by the protocol
for causal consistency drops much faster than the others as
the degree of locality increases.

The presence of glitches explains the worse performance of
the the causal consistency protocol with a very low degree
of locality (<0.2). When a glitch occurs, an intermediate
node in a dependency graph is reevaluated (and thus trig-
gers new change notifications) every time it receives a partial
update. Conversely, protocols for glitch freedom that accu-
mulate partial changes before triggering a new reevaluation
are more efficient in this case.

Size of Reactive Graphs. Figure 6 shows the performance
of DREAM when changing the size of the dependency graphs,
i.e., the number of (observable and reactive) objects included
in each graph. As expected, the propagation delay increases
with the size of the graph (Figure 6a) because, on average,
more steps are required to propagate the changes to all the
interested reactive objects. The overall network traffic also
increases with the size of the graph. Interestingly, the size
of the graph has a more significant impact for the causal
consistency protocol, since is produces more glitches and
consequently more (redundant) expression evaluations.

Size of Reactive Expressions. Figure 7 shows the im-
pact of the size of reactive expressions (i.e., the number of
observable objects appearing in each expression) on the per-
formance of DREAM. Increasing the number of objects in
each expression (with a fixed degree of locality) increases

150

 0
 0.5

 1
 1.5

 2
 2.5

 3
 3.5

 4

 1 10 100 1000
Pr

op
ag

at
io

n
D

el
ay

 (m
s)

Number of Operators

Causal
Glitch Free

Atomic

Figure 8: Efficiency of DREAM.

the number of notifications from remote objects that are re-
quired to evaluate the expression. For this reason, the delay
increases for all protocols (Figure 7a). However, the delay
increases faster with protocols for glitch freedom and atomic-
ity, which need to receive all the notifications before process-
ing them. Conversely, the causal protocol always processes
(local) notifications immediately, without waiting for remote
objects. The same considerations explain why increasing
the number of objects in each expression also increases the
overall network traffic (Figure 7b). In this case, the causal
protocol is more affected: indeed, a higher number of de-
pendencies between objects reflects in a higher number of
potential glitches, and consequently a higher number of par-
tial updates (not generated by the glitch free and the atomic
protocols). However, the number of potential glitches in the
graph stabilizes after 3 objects, and the traffic does not in-
crease further.

6.2 Efficiency of DREAM

In the previous section, we evaluated DREAM with a net-
work emulator to easily control a number of parameters.
Since the network emulator did not consider the processing
times (both at the clients and at the brokers), all results we
collected are valid under the assumption that the process-
ing time is negligible with respect to network latency (i.e.,
processing does not the bottleneck). We now validate this
assumption, assessing the performance of DREAM.

To isolate the costs of event processing, we consider a local
scenario, where a component C and a broker B are deployed
as two separate Java processes on the same machine4. The
component defines an observable object obs of type double
and a reactive object r that depends on obs. In the test,
we increased the complexity of the expression that defines r,
introducing an increasing number of (arithmetic) operators
applied to obs. Figure 8 shows the delay introduced by the
DREAM middleware to propagate changes from obs and to
recompute the expression that defines r.

In the case of causal consistency, the processing is local to
the component: each change to obs generates an event that
is passed to r using local method invocation and triggers the
recomputation of the reactive expression. This experiment
evaluates the cost of intercepting a method call, propagate
the change, and reevaluate the expression using the code
generated by ANTLR. We measure a delay that is lower
than 0.15 ms with up to 10 operators and lower than 1 ms
even in the extreme case of 1000 operators5.

In the case of glitch free consistency, the propagation in-
volves the broker B. In this case, the time we measure in-
cludes two communication steps (from C to B and back),

4
The experiment is run on Core i7-3615QM @2.3 GHz with 8 GB

of Ram and Java 7 on Mac OS 10.9.1.
5
In case of more computationally intensive operators in expres-

sions, this time can clearly increase. We plan to investigate incre-
mental evaluation for such cases as future work, as discussed in [28].

which require serialization and deserialization of every event
and processing at B. This process introduces a modest addi-
tional delay of about 1 ms with respect to causal consistency.
Finally, the atomic consistency protocol introduces an ad-
ditional communication step to contact the TGS. Based on
these results, we can confirm the assumption of the previous
section.

6.3 Discussion and Outlook
To the best of our knowledge, this work is the first attempt

to investigate different consistency guarantees for DRP .
Our evaluation demonstrates the validity of the major de-
sign choices of DREAM and suggests guidelines for future
research.

First, our analysis shows the benefits of a distributed in-
frastructure for the propagation of changes, both in terms
of network traffic and propagation delay. As expected, this
advantage increases in scenarios where data accesses exhibit
forms of locality. Since there is no single point of failure, a
decentralized architecture provides an optimal starting point
to explore fault-tolerant solutions. Currently, DREAM only
supports caching though a globally accessible registry in case
a value cannot be retrieved from a node. Future research
should focus on how to keep the reactive network operational
even when certain nodes are temporarily unresponsive.

Second, we observe that our protocol for causal consis-
tency is usually more efficient than the others, since it en-
ables components to autonomously dispatch local changes.
On the other hand, it can potentially produce more traffic
and demand for a higher number of expression evaluations
due to the presence of glitches. This circumstance demands
for an infrastructure that (i) supports different consistency
protocols inside (different parts of) the same reactive system
and (ii) can switch among them to optimize performance.

It is worth notice that the glitch free protocol could be
optimized to process local changes in a component, without
contacting external brokers – in case this cannot introduce
glitches. This would require, however, a complete knowledge
of the dependency graphs at each component. For this rea-
son, we decided not to implement this solution in DREAM.

Finally, providing atomic consistency does not signifi-
cantly impact on the overhead of DREAM when the rate
of changes remains low. However, it prevents from running
multiple propagations concurrently: because of this, in pres-
ence of high rate of changes, notifications would be queued
at the TGS, with a negative impact on propagation delay6.

7. RELATED WORK
Given the cross-field nature of our research, we organize

related work in (i) reactive programming and (ii) event-
based systems.

Reactive programming. Reactive programming refers to
language abstractions and techniques to model and support
time changing values. It was originally proposed in the con-
text of strictly functional languages. Specifically, functional
reactive programming (FRP) was first introduced in Haskell
to support interactive animations [11].

Recently, reactive programming has gained increasing at-
tention, and several implementations have been developed
for various programming languages. We report only the

6
We did not include experiments showing this phenomenon for

space reasons.

151

most prominent examples; the interested reader can find a
recent and detailed survey on reactive programming in [1].

In the context of functional languages, Fran [11, 12] and
Yampa [18] extend Haskell with two first class concepts to
express time-varying values, behaviors for modeling continu-
ous values and events for modeling discrete changes. Similar
to DREAM reactive objects, behaviors can be combined and
various Haskell operators were adapted to work with behav-
iors. Analogous extensions have been proposed for Scheme
(see FrTime [5]) and Scala (Scala.React [25], REScala [36]).
In contrast to DREAM, these solutions target only the lo-
cal setting. Interestingly, in [12] the authors propose hy-
brid push/pull-based propagation of changes: the former
reevaluates a reactive expression as soon as a change is de-
tected, making the new updated value always available; the
latter postpones the evaluation until it is strictly required,
potentially reducing the computational effort. DREAM im-
plements a pure push-based propagation model: we plan to
investigate the feasibility and benefits of pull-based propa-
gation in future work.

Similar to DREAM, Frappe [7] is a reactive program-
ming library for Java. It extends the JavaBeans component
model [4] introducing event sources (similar to DREAM ob-
servable objects) and behaviors (similar to DREAM reactive
objects). Despite these similarities, Frappe does offer dis-
tributed deployment.

In the context of Web programming, Flapjax [30] has been
proposed as a reactive programming library for JavaScript.
The design of Flapjax is mostly based on FrTime. Flap-
jax supports distribution to enable client/server communi-
cation, but, as acknowledged by the authors, glitches are not
avoided in distributed reactive applications.

AmbientTalk/R [23] is a reactive extension to Ambi-
entTalk , an actor-based language for mobile applications.
Similarly to Flapjax, AmbientTalk/R supports distributed
reactive programming but does not ensure consistency guar-
antees or glitch avoidance.

The need for DRP with consistency guarantees has been
widely recognized in literature [28, 1, 35]. Similarly, the in-
tegration of reactive and object-oriented programming have
been discussed in [37]. In future work, we plan to explore
this integration in more detail, focusing on solutions for au-
tomated tracking of dependencies, better support for inher-
itance, and efficient strategies for recomputation of values.

Reactive programming has been influenced by other
paradigms based on dataflow and synchronous propagation
of change. Synchronous programming [3] is one of the ear-
liest paradigms proposed for the development of reactive
systems. It is based on the synchrony assumption, i.e., it
assumes reactions to be instantaneous and atomic. This
assumption simplifies the program, which can be compiled
into finite-state automata. Dataflow programming [39] rep-
resents programs as directed graphs, where nodes represent
computations and arcs are dependencies between them.

Event-based systems. Event-based systems [31] define a
model for dealing with reactive applications that is comple-
mentary to the one described in this paper. In reactive pro-
gramming, events (notifications of changes) are implicit and
reactions (recomputation of reactive variables) are declara-
tively specified. Conversely, in event-based systems events
are explicitly notified using call-back functions and the pro-
grammer can imperatively specify custom reactions.

DREAM currently relies on a publish-subscribe infrastruc-

ture [15] for the propagation of events. In addition to event
forwarding, Complex Event Processing (CEP) systems [9,
24, 13] provide operators for event composition. For exam-
ple, they enable to detect (temporal) patterns or apply func-
tions over all the events received in a given time window. We
plan to exploit these features to extend the expressiveness of
DREAM. The interested reader can refer to our paper [28],
where we compare reactive programming and CEP systems
and provide a roadmap for integrating them.

Concerning consistency guarantees, [40] discusses order-
ing guarantees for publish-subscribe sytems. Similarly, [2]
presents an analysis of consistency in the domain of CEP.

In the context of event-based systems, it is worth mention-
ing that several libraries and language extensions have been
proposed to support events and event composition as first
class language constructs. The most notable examples are
EventJava [14], Ptolemy [33], EScala [17] and JEScala [38].

Finally, Rx [29] is a library originally developed for .NET
and recently ported to various platforms, including Java.
Rx has received great attention since it has been success-
fully adopted in large-scale projects, including content dis-
tribution in the Netflix streaming media provider. Rx shares
many similarities with event-based languages, including ab-
stractions for event composition based on LINQ. The pro-
gramming model of Rx is slightly different from the one of-
fered in FRP and in DREAM. In particular, Rx provides
a generic interface for event sources; the programmer can
subscribe to an event source by registering a closure that
gets executed when an event occurs. Even if Rx supports
distributed programming, it does neither ensure consistency
guarantees nor glitch freedom.

8. CONCLUSIONS
The reactive programming paradigm has been proposed to

ease the development of modern reactive systems. Neverthe-
less, distributed reactive programming (DRP) has received
little attention so far. Most significantly, existing solutions
for DRP do not provide precise semantics and guarantees
for the propagation of changes. This paper addressed such
problem by introducing an abstract model for DRP and by
formalizing some desirable consistency guarantees. Starting
from this analysis, we defined three propagation semantics,
we implemented them in the DREAM middleware, and we
provided an extensive evaluations of their costs.

In future work, we will target both the expressiveness and
the efficiency of DREAM. On the one hand, we want to in-
vestigate more complex reactive expressions (e.g., to capture
time series and sequences of changes). On the other hand,
we want to explore different strategies for evaluating expres-
sions (e.g., incremental evaluation, lazy evaluation). Finally,
we plan to assess the benefits of DREAM in real applications.

We hope that the content of this paper, and in particular
our analysis of the consistency guarantees and our evaluation
of their costs, will represent the base for future research ef-
forts, to provide flexible and powerful abstractions and ease
the development of distributed reactive systems.

Acknowledgment
This research has been funded by the Dutch national pro-
gram COMMIT, by the European Research Council, grant
No. 321217 “PACE” and by the German Federal Ministry
of Education and Research (Bundesministerium für Bildung
und Forschung, BMBF) under grant No. 01IC12S01V.

152

9. REFERENCES
[1] E. Bainomugisha, A. L. Carreton, T. Van Cutsem,

S. Mostinckx, and W. De Meuter. A survey on
reactive programming. ACM Comput. Surv., 2012.

[2] R. S. Barga, J. Goldstein, M. H. Ali, and M. Hong.
Consistent streaming through time: A vision for event
stream processing. In CIDR, pages 363–374, 2007.

[3] A. Benveniste, P. Caspi, S. A. Edwards,
N. Halbwachs, P. Le Guernic, and R. De Simone. The
synchronous languages 12 years later. Procs. of the
IEEE, 91(1):64–83, 2003.

[4] D. Blevins. Overview of the enterprise JavaBeans
component model. In Component-based software
engineering, pages 589–606. Addison-Wesley Longman
Publishing Co., Inc., 2001.

[5] K. Burchett, G. H. Cooper, and S. Krishnamurthi.
Lowering: a static optimization technique for
transparent functional reactivity. In PEPM, pages
71–80, 2007.

[6] G. H. Cooper and S. Krishnamurthi. Embedding
dynamic dataflow in a call-by-value language. In
ESOP, pages 294–308, 2006.

[7] A. Courtney. Frappe: Functional reactive
programming in Java. In PADL, pages 29–44, 2001.

[8] G. Cugola, E. Di Nitto, and A. Fuggetta. The JEDI
event-based infrastructure and its application to the
development of the OPSS WFMS. IEEE Trans. Soft.
Eng., 27(9):827–850, 2001.

[9] G. Cugola and A. Margara. Processing flows of
information: From data stream to complex event
processing. ACM Comput. Surv., 44(3):1–62, 2012.

[10] G. Cugola and G. P. Picco. REDS: a reconfigurable
dispatching system. In SEM, pages 9–16, 2006.

[11] C. Elliott and P. Hudak. Functional reactive
animation. In ICFP, pages 263–273, 1997.

[12] C. M. Elliott. Push-pull functional reactive
programming. In Haskell, pages 25–36, 2009.

[13] O. Etzion and P. Niblett. Event processing in action.
Manning Publications Co., 2010.

[14] P. Eugster and K. Jayaram. EventJava: An extension
of Java for event correlation. In ECOOP, pages
570–594, 2009.

[15] P. T. Eugster, P. A. Felber, R. Guerraoui, and A.-M.
Kermarrec. The many faces of publish/subscribe.
ACM Comput. Surv., 35(2):114–131, 2003.

[16] W. Galuba, K. Aberer, Z. Despotovic, and
W. Kellerer. Protopeer: From simulation to live
deployment in one step. In P2P, pages 191–192, 2008.

[17] V. Gasiunas, L. Satabin, M. Mezini, A. Núñez, and
J. Noyé. EScala: modular event-driven object
interactions in Scala. In AOSD, pages 227–240, 2011.

[18] P. Hudak, A. Courtney, H. Nilsson, and J. Peterson.
Arrows, robots, and functional reactive programming.
In Advanced Functional Programming, pages 159–187.
Springer, 2003.

[19] X. Jia. A total ordering multicast protocol using
propagation trees. IEEE Trans. on Parallel Distrib,
Syst., 6(6):617–627, 1995.

[20] R. Johnson, R. Helm, J. Vlissides, and E. Gamma.
Design Patterns: Elements of Reusable

Object-Oriented Software. Addison-Wesley
Professional, 1995.

[21] G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda,
C. Lopes, J.-M. Loingtier, and J. Irwin.
Aspect-oriented programming. Springer, 1997.

[22] L. Lamport. Time, clocks, and the ordering of events
in a distributed system. Commun. ACM,
21(7):558–565, 1978.

[23] A. Lombide Carreton, S. Mostinckx, T. Cutsem, and
W. Meuter. Loosely-coupled distributed reactive
programming in mobile ad hoc networks. In Objects,
Models, Components, Patterns, volume 6141, pages
41–60, 2010.

[24] D. C. Luckham. The power of events, volume 204.
Addison-Wesley Reading, 2002.

[25] I. Maier and M. Odersky. Deprecating the Observer
Pattern with Scala.react. Technical report, EPFL,
2012.

[26] A. Margara and G. Cugola. High Performance
Content-Based Matching Using GPUs. In DEBS,
pages 183–194, 2011.

[27] A. Margara and G. Cugola. High performance
publish-subscribe matching using parallel hardware.
IEEE Trans. on Parallel Distrib. Syst., 2014.

[28] A. Margara and G. Salvaneschi. Ways to react:
Comparing reactive languages and complex event
processing. In REM, 2013.

[29] E. Meijer. Your mouse is a database. Commun. ACM,
55(5):66–73, 2012.

[30] L. A. Meyerovich, A. Guha, J. Baskin, G. H. Cooper,
M. Greenberg, A. Bromfield, and S. Krishnamurthi.
Flapjax: a programming language for Ajax
applications. In OOPSLA, pages 1–20, 2009.

[31] G. Mühl, L. Fiege, and P. Pietzuch. Distributed
event-based systems. Springer, Heidelberg, 2006.

[32] T. Parr. The Definitive ANTLR 4 Reference.
Pragmatic Bookshelf, 2013.

[33] H. Rajan and G. T. Leavens. Ptolemy: A language
with quantified, typed events. In ECOOP, pages
155–179, 2008.

[34] M. Sadoghi, H. Singh, and H.-A. Jacobsen. Towards
highly parallel event processing through reconfigurable
hardware. In DaMoN, pages 27–32, 2011.

[35] G. Salvaneschi, J. Drechsler, and M. Mezini. Towards
distributed reactive programming. In Coordination
Models and Languages, pages 226–235. Springer, 2013.

[36] G. Salvaneschi, G. Hintz, and M. Mezini. REScala:
Bridging between object-oriented and functional style
in reactive applications. In AOSD, 2014.

[37] G. Salvaneschi and M. Mezini. Reactive behavior in
object-oriented applications: An analysis and a
research roadmap. In AOSD, 2013.

[38] J. M. Van Ham, G. Salvaneschi, M. Mezini, and
J. Noyé. JEScala: Modular coordination with
declarative events and joins. In AOSD ’14, 2014.

[39] P. G. Whiting and R. S. Pascoe. A history of
data-flow languages. Annals of the History of
Computing, 16(4):38–59, 1994.

[40] K. Zhang, V. Muthusamy, and H.-A. Jacobsen. Total
order in content-based publish/subscribe systems. In
ICDCS, pages 335–344, 2012.

153

